Friday, 18 January 2019

Murder in Reno.

Reno, Nevada, USA, Earth: 6th March 2100:

A gen-yu-iyne locked room mystery!” Carter announced.

Pretty much!” agreed Chang. “Cameras show no one leaving all night. Keycard log confirms it.”

Cameras and records can be hacked...”

True, but we also have views from independent cameras out on the street. Need to be very thorough to remember to hack those too. Besides, the door is visible from reception and the desk guy would have seen anyone entering or leaving. He is sure that he would have noticed if the two girls had come out. Real lookers!”

Marcon the Master Illusionist lay dead on the king-size bed. He had been tied to the bed and smothered with a pillow, so suicide seemed unlikely, even for someone of his talents.

Carter sighed. “Anything missing?”

Yeah. He had a list of valuables logged with his insurance company. He had an expensive watch and some good jewellery. Those are gone, as are a number of other items that could be easily pawned. No cash found in the room either.”

You said 'girls'?”

Also listed as valuables. A pair of matched female bioroids, 'Mia' and 'Pia'. They were his assistants. Blonde, attractive, what you would expect. They went into the room with him last night, were not here when the body was discovered.”

Matched?”

Yup. Lots of illusions use identical twins. Magicians often buy matched bioroids.”

Hmmm. Anything else interesting about them?”

Umm...double-jointed...extra flexibility...extended breath-holding ability...can dislocate joints ...ouch! Designed as contortionists. They need those for some other tricks.”

Carter began to grin. “I know it is a cliché, but for once I think someone actually did escape via the ventilation duct!”

Sunday, 13 January 2019

Lakhcities and Sub-megacities.


The term “future city” conjures up images of vast urban expanses filled with towering skyscrapers and neon. A “megacity” is defined as a city with a population of ten million or more. With a current world population of more than 7.5 thousand million it is perhaps surprising that the Earth has only 47 megacities. The majority of these are in Asia, with other continents having only a handful each. North America, for example, has only three megacities, Los Angeles, New York and Mexico City. By 2100, the era of Transhuman Space, the population has reached 11 thousand million. Many current megacities will have gotten bigger and it is reasonable to expect that a few more cities will have grown to megacity status. It is probable that there will not be that many more, however. TS Fifth Wave tells us that many of the world's largest cities are undergoing something of a decline as technology removes the need to live in such conditions. The majority of the world's population are still likely to be living in areas other than megacities. Transhuman Space offers some interesting alternatives such as arcologies, space stations, floating communities and undersea habitats. This article suggest some features for more conventional urban areas that are not megacities.
A friend of mine has a pet theory that the ideal size for a city is a million or less. He has yet to explain to me how population growth beyond this would avoided. Forced resettlement would not be practical in many nations! His figure does not figure in population density, geography, infrastructure and other relevant factors either. He did, however, inspire me to do some research.
The modern day UK (67 million people) has 94 cities of between 100,000 and 1 million. London is a megacity but the other cities are much smaller. Very few UK cities are between 1 and 10 million in size. Looking at this for the US is a bit harder due to the differing definition of city. An “incorporated area” is not really representative and I am not sure “metropolitan area” is much better. About two thirds of metropolitan areas did seem to be under the million mark, however. I originally used the term sub-megacity for those in the 100,000 to 1 million size. The term “lakhcity”, from the word “lakh”, for 100,000, is neater.
The technology of 2100 will have had an influence on living patterns. For many workers it will no longer be necessary to physically commute into a place of work. Living in smaller communities and working from home will have become commonplace. This will become true even of some “physical” jobs. It will be possible to telefactor to cybershells and other devices.
A company or corporation no longer needs to be situated in a major city or megacity to conduct business and have influence. Some corporations may prefer to base themselves in smaller cities, effectively finding smaller ponds to be the big fish in. Just as many towns now revolve around a single industry, mine or factory, so some small cities in the future may be similarly distinguished by the corporation centre present.
The trend away from megacities may be a useful boost to many smaller communities. We may indeed see most of the population spread across communities of a million or less. Many of these areas will grow from existing towns and cities. Some communities, however, will be new creations, and these are more likely to be different to what we are used to now. This will include communities that are created on Mars or the other worlds and moons. Such new communities or new areas of older communities are a fresh slate so we are more likely to see new concepts in city design applied to them. 


A system likely to be utilized is the “fused grid” system. The city is divided into “quadrants” of about 400 metres to a side. This gives an area of 16 ha/ 40 acres and a quadrant can be traversed on foot in around five minutes. The quadrants are separated by twin roads for motor traffic. Most quadrants are residential with park areas. A interesting variation is that in each block of four quadrants one is partially or non-residential. This quadrant would have shopping areas, industrial and office concentrations or large parks. Each such area would be bordered by and be within easy walking distance of eight residential quadrants. In addition to this, the areas between the twin roadways bordering quadrants are utilized for high intensity uses such as schools (where they still exist), hospitals, community facilities, sports stadiums, high-density housing, hotels and retail. Numerous pedestrian/cyclist bridges connect quadrants and intra-road “reservations”.



Residential quadrants are mainly park areas and housing. Design strategies such as “new pedestrianism” are likely to be applied to quadrants. Buildings are designed to face onto pedestrian walkways and cycle paths. Cycle paths are also used by rollerskaters, skateboards and similar. Many cities have communal or rental bike schemes. Certain low-speed, low emission powered vehicles such as disability scooters are also permitted on cycle routes. Many households have a Christiana trike, useful for picking up groceries or ferrying the toddlers to daycare. Pedal-powered vehicles may have a small electric booster motor for assistance on hills or extra speed when needed. Speed restrictions apply on routes shared with pedestrians. In some communities ro-peds in electric mode are allowed on cycle paths if they have a speed restriction program active. Recumbent e-bikes or e-trikes with aerodynamic fairings are an alternative mode of fast transport. The better models have gyro-stabilization and other high-tech mod cons!

Conventional motor vehicles within a quadrant are usually restricted to roads or alleys behind the buildings. Many buildings are built around courtyards or along cul-de-sacs. Such features lend themselves to the establishment of gated communities or controlled areas if desired.


TS Fifth Wave p.23 notes that ownership of private motor vehicles has decreased. This will probably vary with region and local conditions, however. In the US and some parts of Asia owning a motor vehicle is still a status symbol, no matter how impractical it is becoming. If a resident of a quadrant wants to visit a more distant quadrant there is usually a variety of public or hired transport that can be easily and economical utilized. Computer traffic control allows even some public transportation systems to pick up a passenger on request. Just order transport from your wearable, VII or comppanion and it will tell you where and when to meet your ride. Within a typical quadrant the motor vehicles most likely to be seen on the roads are municipal or delivery vehicles. Where residences do have a garage it is more likely to hold an assortment of pedal-vehicles and perhaps a ro-ped or two. Often garage spaces are repurposed. The small size of a quadrant means that many have a communal parking structure for cars in or under the quadrant. Residents and visitors park in this area, knowing their destination is within a few minutes walk.
Conventional traffic is mainly along the twin roadways between quadrants. Where these twin roadways cross others the intersections utilize traffic roundabouts to keep traffic flowing. GMs should bear in mind that such areas can be put to various purposes. Some have monuments, fountains, duckponds, sculptures or floral displays. They can also be stations for surveillance cameras and drones, parking spots for police vehicles or store areas for automated emergency systems.

Friday, 4 January 2019

Energy Cells

Version 2.4
This started out simply as an attempt at creating better tables for the blog. It has turned into a more detailed look at energy cells in Transhuman Space. Most of this is not needed for gameplay but the extra detail does help flesh out the background.

Page 140 of Transhuman Space 3rd edition tells us one pound of batteries stores 1 kilowatt-hour (3,600 kilowatt-seconds or 3.6 MJ) of energy, has a volume of 0.02 cubic feet and costs $30. It then gives examples of common standardized energy cell sizes. These have the same names as the power cells described in other third edition rules. The sizes are similar, but not identical to, the energy cell sizes given in 3e Ultra-Tech, p.10-11. In Ultra-tech 3e the AA cell is 116" in diameter and 132" thick, 8,000 to the pound. The A cell is ¼" diameter and ⅛" thick, 400 to the pound. In the THS descriptions, they would be 2,000 and 2,000 to a pound. 3e Ultra-Tech gives dimensions for cells but the density varies for the weights given.

THS 3e also tells us that a pound of battery occupies 0.02 cubic feet. Using this figure gives energy cells that seem far bulkier than seems likely. The AA cell, for example, works out as equivalent to a cube of sides of more than 6.5 mm. This seems impractical for an energy cell that is intended for use in very small items such as the 1/20" (1.27 mm) nanobug (THS 3e p.154). It seems likely the author was thinking of UT 3e AA cells and not aware the figures he gave describe something larger. UT 3e AA cells are still bigger than a nanobot.
I will deal with the subject of energy cells for very small devices presently. I began experimenting with different values for volume. I tried making the AA cell the equivalent of a 3 mm cube, which works out as a volume/lb of 54 cubic centimetres. Interestingly, this is 0.0019 cubic feet. This makes me wonder if the figure of 0.02 was a typo and should have read “0.002”. Not remembering the nanobug description, I decided to make the AA cell a 2.5 mm cube, which seemed a practical shape for such a small object. This gives a volume/lb of 31.25 cubic centimetres (0.0011 cubic feet). The cell descriptions below are based on this. Dimensions given are approximate, and given in metric since this is more likely to be used in the THS-era. The positive end of the cell is of a slightly smaller diameter.




Size


wt (lb)


no.
/lb


kWh


Dimensions


Cost


AA3


0.0005


2000


0.0005


2.5 mm
cube


$0.015


AA2


0.0005


2000


0.0005


1.6 dia.
x 7.8 mm


$0.015


AA1


0.0005


2000


0.0005


4.5 dia. x 1 mm


$0.015


AA-Flex


0.0005


2000


0.0005


4 mm
square.


$0.015


A1


0.005


200


0.005


5.8 dia. x
5.8 mm


$0.15


A2


0.005


200


0.005


12.7 dia. x 1.2 mm


$0.15


A-Flex


0.005


200


0.005


12.5 mm
square


$0.15


B


0.05


20


0.05


12.7 dia. x 12.7 mm


$1.5


C


0.5


2


0.5


27 dia. x
27 mm


$15


D


5


0.2


5


86 mm square x 22 mm


$150


E


20


0.05


20


86 mm cube


$600


The limited volume of devices likely to use the smallest cells suggests that more than one configuration of some types may be needed. The most common variety of AA cell would be a 2.5 mm cube with rounded corners. These are relatively easy to handle, although it helps to have tweezers. Bulk packs of AA cubes include a pair of plastic tweezers. AA cubes are also known as AA3 or just AA3s. The AA1 configuration is intended for thin devices. AA2 cells are used in the narrowest of devices and are relatively uncommon compared to the other configurations. AA2s are known as “pin cells” or by similar names.
A-size is also common in more than one configuration, one being a flat disc and the other a more compact “pill-cell” cylinder. I have changed the size of the A1 from 7 dia. x 4 mm to 5.8 dia. x 5.8 mm. An A cell holds the same energy as a typical 20th century 9V battery, which is twenty times heavier (0.1lb).
B cells are of similar size to a pistol cartridge case. A stack of ten A2s can substitute for a B cell in some devices. The many applications for B cells include powering electrolasers and shock gloves.
C cells are slightly over an inch in diameter and height. (Actually similar to the size of a modern 3/5 C cell!) In the first version of this page, C cells were 26 dia. x 30 mm. Equipment designed for larger or smaller cells often has an adapter for C cell operation or can be fitted with a plug-in adaptor. The plug-in adaptor has a holder for one or more C cells and a universal power connector. It plugs into a socket on equipment rather like a modern USB device does. The connector will probably be a micro-USB plug. Applications for C cells include powering laser pistols and rifles. A C cell has the same power as a TL7 12V car battery.
My original idea was for D cells to be 50 dia. x 80 mm. Ultra-Tech 4e suggests D cells are dimensioned similarly to a paperback book. This shape is more space-efficient. Suggested dimensions for a D cell are 86 mm square x 22 mm. This configuration is consistent with the statement that a D cell might be worn on a belt. It also allows four D cells to substitute for an E.
Originally I had E cells sized as 90 dia. x 100 mm. If fitted with a carrying handle it would resemble a small paint can. Ultra-Tech 4e describes E cells as about the size of a backpack”, which does not work out, suggesting a volume much larger than four D cells. The E cell is now a round-cornered cube of about 86 mm each side. Many have a carrying handle, and this is usually detached when the cell is installed. Heavy power demands use multiple E cells, individual E cells being easier to handle than a single larger cell.

Non-rechargeable cells have the same sizes, weight and cost as rechargeable cells but store twice the energy. Thus a non-rechargeable A-flex holds 0.01 kWh, twice the power of a modern 9V.

Ultra-Tech 4e p.19 changes the weight of AA and A cells to reflect those in THS 3e but there are inconsistencies with other sizes, as noted already. More usefully, Ultra-Tech 4e also introduces adhesive, flexible energy cells resembling polymer postage stamps. These are used in THS-era clothing, smart labels, smart paper, and flexible, disposable items. Flexible cells may be rechargeable or non-rechargeable. AA and A flexible cells are the usual cost; other sizes are 4 times the normal cost and may be much harder to acquire. Multiples of flexible AA and A cells are usually used instead of other sizes.

THS 3e p.140 tells us AA to E cells are just some of the standardized sizes available. Ultra-Tech 4e also had the 200lb F cell! In GURPS Terradyne TL7 power cellls (batteries) were still in wide use, even in Luna City. Other size energy cells may be encountered but the range and sizes suggested here should meet most needs. 

Very small devices that cannot use any of the AA cells proposed here would probably use built-in batteries and utilize wireless recharging systems. Physically changing the batteries in every microbot is not really practical! Instead treat such devices as taking a charge equivalent to an AA cell.


(Blogger still screws up tables! A solution!)

Wednesday, 2 January 2019

Weapons: Four New Weapons for Transhuman Space

Mikku 9mm Caseless.
The Mikku is a semi-automatic handgun manufactured and most commonly encountered in the Islamic Caliphate. It uses the same electric-ignition 9mm caseless round as the Enkidu machine pistol. The Mikku is usually issued to non-combat personnel such as officials, administrators and senior officers. Wearing, or just owing a Mikku, is regarded as something of a status affirmation. Decorated and presentation examples are relatively common. Some examples are fitted with lanyards and rings.
Outside the Caliphate a nice example or variant of Mikku may be of interest to collectors.


Guns(Pistol) (DX-4, or most other Guns at -2)





Dmg


Acc


Range


Wt


ROF


Shots


ST


Bulk


Rcl


Mikku
9mmCL


2d pi


1


120/1,300


1.8/0.25


3


9+1(3)


7


-1


2


NateGeCo Grosse Mk.1 14.4mmCL.
The Grosse 144 is a large calibre caseless handgun produced by a small company in New Mexico. “Proudly not quite Texas” its advertisements read.
The 14.4mmCL is the largest calibre conventional caseless pistol round currently available. If you absolutely, positively, need to shoot through an engine block, this is the pistol for you.
The Grosse is not issued by any military or police forces but in some sections individuals may be permitted to purchase and carry them. The weapon is favoured by some game wardens and park rangers who may encounter large, dangerous animals. Its size and power also appeals to the vanity of some of the more ostentatious of criminals. Frequent appearances in entertainments create the impression that this weapon is far more common than it actually is.
HUD link, diagnostics and visible laser link fitted as standard. Various other options available.


Guns (Pistol) (DX-4, or most other Guns at -2)



Dmg


Acc


Range


Wt


ROF


Shots


ST


Bulk


Rcl


Grosse
14.4mmCL


5d-1 pi+


2


260/2,300


4.5/1


3


7+1(3)


12


-3


3
  

Elis M7A3 Trishot.
The Trishot resembles a tube ten inches long and two inches in diameter. It is extended to fifteen inches length for firing (2 Ready actions). The breech end is sealed by a shoulder plate. The muzzle has a cap that is blown free when the weapon is fired. Just below the muzzle is folding pistol grip. Unfolding the grip exposes the trigger and cocks the firing mechanism. Folding the grip decocks the mechanism. On one side of the tube is a quadrant sight. Removing the sight and fitting it to the other side takes three Ready actions. Trishots are issued configured for right-handed users.
The Trishot is loaded with three HEMP grenades. Unlike weapons such as the GL-pod and DGL all three grenades are fired at once. A captive piston mechanism ensures that firing is smokeless, flashless and silent, at least until the warheads detonate. Use the 256-yard line on the Hearing Distance Table, p. 158, High-Tech 4e. The Trishot is a one-use, disposable launcher. The unit is discarded after the grenades are fired.
Turning the quadrant sight to the desired range automatically programs the grenades. The first grenade will explode when it reaches the set distance. The second grenade will explode two yards short of the set distance, and the third grenade two yards before this. The grenades also have impact fusing and will explode if they encounter a solid object before they reach airburst range. A user may sweep the launcher when firing, distributing the grenades across a 30 degree arc.
Each HEMP grenade does 6d x 5(10) cr inc + linked 4d cr ex [3d].
The Trishot is an ambush and harassment weapon, used to create large scale damage and confusion in a short space of time.
Exact origin of this weapon remains a mystery. The TSA has pirated the design and several insurgent movement have acquired the original or pirated template.
A non-lethal weapon based on the Trishot contains grenades that can be filled with paint or similar liquids. This is known as the “Trisplat” and is used for activities such as tag hits.


Guns (Grenade Launcher) (DX-4, or most other Guns at -2)



Dmg


Acc


Range


Wt


ROF


Shots


ST


Bulk


Rcl


Trishot


See text


2


150/500


2.8


1


1 x 3


9


-3


3

Grenade velocity 70 yd/s. Arming distance 14 yards.


Cape Commando 5mm.
The Cape Commando has the features one might expect from a good Fifth or Fourth Wave battle rifle. It has a HUD link, laser sight, fire control system and system diagnostics. It is fully compatible with homing ammunition and fully integrated with mounted mini-missile and grenade launcher pods.
The distinguishing feature of the Cape Commando is that it is designed to use the ammunition and magazines of 5mm BCRs.
The Cape Commando is a useful option for units that operate where 5mm BCRs are commonplace.
The SAC First Recon and several other African special forces units use Cape Commandos, but their use is by no means limited to that continent.


Guns (Rifle) (DX-4, or most other Guns at -2)



Dmg


Acc


Range


Wt


ROF


Shots


ST


Bulk


Rcl


Cape
Commando 5mm


5d pi


4


500/3,200


9/1


3


30+1(5)


9


-4


2


Weight given does not include mini-missile (3.8 lb) or grenade launcher (3 lb) pods.